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1 INTRODUCTION 
 
Veridian’s KASSPER proposal, as accepted by DARPA and AFRL, included the following five tasks to 
be investigated over the nearly four-year program duration: 

• SAR Autofocus 
• SAR Target Detection 
• SAR Image Enhancement 
• SAR Image Registration/Geolocation 
• GMTI Target Detection 

 
Under FY02 funding, during the period from April 2002 to November 2002, Veridian concentrated its 
KASSPER research on the areas of SAR target detection and SAR image enhancement via improved 
display remap. The plans for these activities were presented in a May 2002 program review. During the 
same period, Veridian devoted lesser effort to KASSPER approaches for moving target focusing and 
wind-blown tree-smear removal. 
 
Veridian’s FY02 KASSPER activities are summarized in Section 2 of this report. Recommended 
activities for FY03 are presented in Section 3. 
 

FY02 ACTIVITY 

Veridian’s FY02 KASSPER activities were concentrated on SAR stationary target detection and image 
remap. These topics were selected because it was felt that they offered significant pay-off from the 
application of KASSPER knowledge-aided approaches and because they addressed KASSPER 
opportunities at both ends of the spectrum of external knowledge detail and performance sensitivity. 
 
SAR stationary target detection has similar function and importance to GMTI target detection. SAR target 
detection is often thought of as a back-end process performed off-line at a remote ground station 
following imagery down-link. However, it is highly desirable that SAR target detection be performed on-
board the SAR collection platform in real-time and, most importantly, with a high degree of confidence. 
Such a front-end exploitation capability would greatly enhance the utility of SAR sensors particularly 
given the large-area, fine-resolution stripmap collection modes of current and near-term operational SARs 
such as those on the Global Hawk UAV and the U-2 aircraft. 
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The need for image quality improvement to support human inspection and interpretation is a critical 
aspect of SAR data exploitation that is not germane to GMTI applications. Effective SAR image quality 
enhancement is most acute in those applications requiring on-board viewing of the data prior to 
subsequent military response as is the case for tactical aircraft such as the F-18 and JSF. 

2.1 SAR Stationary Target Detection 
Veridian’s initial consideration of KASSPER approaches for improved SAR target detection yielded three 
“obvious” candidates: 
 

• Terrain delimitation exploits external knowledge of ground slope, cover, moisture, accessibility, 
etc., to weight SAR target detection likelihoods based on the local terrain suitability for targets to 
be present. 

• SAR change detection exploits previously acquired SAR images to suppress false alarms from 
target-like cultural clutter (buildings, fences, etc.). Pixel-level coherent or non-coherent change 
detection approaches use previously acquired SAR images to effectively suppress background 
clutter thereby reducing false alarms and enhancing the detectability of low contrast targets. 

• Computationally efficient constant false alarm rate (CFAR) SAR target detection is used for 
initial target screening by comparing each SAR image pixel to statistics of the local background 
and declaring “target present” when a pixel under test is not consistent with the background 
statistics. The CFAR formulation requires that the local background be homogeneous to yield the 
desired false alarm rate. The most common CFAR implementation uses a fixed background 
region about the pixel under test and suffers the consequences of degraded target detection 
performance when the background is non-homogeneous. More complex CFAR algorithm 
deviants attempt to adaptively segment the image into homogeneous clutter regions prior to the 
implementation of the background consistency test. An “obvious” KASSPER approach is to 
implement a knowledge aided CFAR (KA-CFAR) algorithm in which the image segmentation is 
performed using external knowledge sources such as terrain categorization maps and digital 
elevation models (DEMs), including estimates of tree canopy heights.  

 
SAR target detection performance improvements based on terrain delimitation and change detection 
approaches have been the subject of multiple past research and development efforts and, thus, did not 
seem to be promising areas for KASSPER innovations. KA-CFAR for SAR stationary target detection, 
although hardly innovative, is directly analogous to the research thrusts of other KASSPER program 
participants to develop improved GMTI target detection algorithms using external knowledge to 
overcome local “training” issues related to non-homogeneous background clutter. Based on the belief that 
KA-CFAR for SAR target detection offered the potential for significant performance improvement and 
that the overall KASSPER program should address the advantages and disadvantages of analogous 
knowledge aided approaches for improved SAR and GMTI target detection, Veridian conducted the 
analysis described below. 

2.1.1 KA-CFAR SAR Target Detection Impact Study 
To illustrate CFAR performance improvement due to a priori knowledge of the clutter boundaries, 200 
simulated complex Gaussian SAR scenes were generated. Each scene, as depicted in Figure 1, consisted 
of areas covered by grass, tree, or both, i.e., tree overlay region. The relative RCS of the trees was set to 
be 5 dB higher than that of the grass. Targets with RCS 10dB higher than the trees were inserted at 
different locations along the grass/overlay boundary – some on the grass and some in the tree overlay. 
 
With targets placed on grass along the overlay region, Figure 2 shows that KA-CFAR achieved an order 
of magnitude or better reduction in the false alarm rate. The false alarm rate in this plot pertains only to 
grass areas immediately adjacent to tree overlay regions. The KA-CFAR results are equivalent to 
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common CFAR performance for targets in the grass region but not near the overlay boundary.  The 
degraded CFAR performance is due to the contamination of the background estimates in the grass region 
along the overlay boundary. 
 
With targets placed in the tree overlay region along the grass boundary, Figure 3 shows that KA-CFAR 
performance was virtually identical to that of the common CFAR algorithm. The false alarm rate in this 
plot pertains only to tree overlay areas immediately adjacent to the grass regions. The KA-CFAR 
performance in Figure 3 is significantly poorer than that shown in Figure 2 due to the lower target-to-
clutter ratio (TCR) in the overlay region. In this case common CFAR performance is limited by the low 
TCR; it is not significantly degraded by contamination of the local background estimates. (The 
background estimates in the overlay region along the grass boundary are contaminated by the inclusion of 
some lower RCS grass pixels.) 
 

 
Figure 1. Simulated clutter regions observed by SAR. 

 
Figure 2. ROC for targets along the boundary on 
grass indicates a significant improvement using KA-
CFAR. 

 
 

Figure 3. ROC for targets along the boundary in the Overlay Region  

indicates no KASSPER advantage due to low TCR. 

 
The analysis results show that KA-CFAR performance can be significantly better than that of common 
CFAR in some situations. KA-CFAR will not yield improved performance for targets that are not near 
clutter boundaries. For targets near clutter boundaries, the performance improvement will increase as 
TCR decreases from high values, peaking at some intermediate TCR (a “sweet spot”), and becoming 
insignificant again as TCR becomes very low. 
 
The practical utility of KA-CFAR is limited by its associated requirement for very detailed and accurate 
knowledge on clutter homogeneity and boundary locations. It is critical that a pixel under test be assigned 
to the correct clutter region so that it can be compared against the appropriate background statistics. In the 
simulations discussed above, KA-CFAR performance improvements would be reduced if pixels in the 
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grass along the grass/overlay boundary were compared against statistics of the overlay background region 
due to inaccuracies in the boundary location. SAR target detection is typically performed at resolutions on 
the order of one meter. Commensurately accurate knowledge of clutter boundary locations in SAR images 
imposes a considerable burden on the processes for generating the required ground cover information. 
Accurate projection of clutter boundaries in SAR images also requires precision digital elevation data not 
only for the ground but also for elevated cover classes such as trees and buildings.   
 
KA-CFAR utility is further limited by the need for external knowledge that correctly defines scene areas 
of homogeneous clutter. As mentioned above, common CFAR performance is degraded by contamination 
of the clutter background statistics. The same is true for KA-CFAR. This situation is particularly acute for 
designated homogeneous background areas that contain even a small percentage of high RCS cultural 
discretes. 

2.2 SAR Image Remap 
 
Current operational SAR systems rely on manual imagery interpretation by analysts/operators with 
widely varying levels of training and skill. SAR sensors typically produce uncalibrated imagery with 
70dB dynamic range that must be interpreted using display devices limited to 30 dB dynamic range. 
Exploitation performance is highly dependent on the suitability of the remap function by which the 
imagery is compressed for display. The SAR image remap challenge is most acute in those military 
scenarios where the operators must examine very large amounts of data and/or must perform very quickly 
and, thus, do not have the luxury of “playing” with the remap parameters. 
 
In support of a major operational SAR sensor, Veridian has developed and transitioned a SAR image 
remap selection algorithm (RSA-3) that adaptively produces 8-bit digital SAR imagery using a remap 
function whose parameters are set on the basis of global image statistics, i.e., it adapts to whole images. 
 
Figure 4 illustrates a log-magnitude SAR image and Figure 5 shows its associated histogram. The 
histogram is bimodal due to the presence of significant areas of land clutter (natural and cultural) and low 
RCS water return. The RSA-3 algorithm is known to perform very well when the SAR image is 
dominated by natural and cultural ground clutter (see Figure 6). As shown in Figure 7, the performance of 
the RSA-3 algorithm degrades when the image histogram becomes bimodal. RSA-3 performance 
shortfalls are typically observed in scenes along lake or ocean shorelines.  Similar performance 
degradations occur in scenes with significant shadow areas. Terrain shadowing is particularly acute for 
airborne SAR sensors that operate at long-standoff ranges. 
 

 
Figure 4.  Typical log-magnitude SAR Image 

(Boblo island, Detroit) 

 
Figure 5. Histogram of magnitude image in 

Figure 4 
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Figure 6. RSA-3 remapping is excellent in the 
absence of areas of low return 

   

Figure 7. As the areas of low return relatively 
grows, the quality of RSA-3 output diminishes 

 
Veridian is currently developing an enhanced non-KASSPER SAR image remap algorithm to address the 
bimodal histogram issue discussed above. The RSA-4 algorithm first attempts to automatically segment 
the image into land clutter and no-return areas. The entire image is then remapped exactly as in the RSA-
3 algorithm except that the supporting statistics are determined only for the land clutter pixels.  
 
Under this program, Veridian demonstrated a KASSPER SAR remap algorithm that is identical to RSA-4 
except that external knowledge is used for the initial image segmentation. The result in Figure 9 was 
generated using the water/land (black/white) mask shown in Figure 8. It is greatly improved from the 
RSA-3 result in Figure 7.  
 

 

Figure 8. KASSPER water/land segmentation 
mask for image in Figure 9. 

 

Figure 9. KASSPER SAR remap algorithm 
does not suffer from bimodal image histogram. 

 
In practice, the KASSPER SAR remap segmentation mask would be derived using land category 
knowledge (for water) and DEMs (for shadows). Clearly, the shadow masks must be based on the radar 
acquisition geometry. The KASSPER approach is concerned with no-return areas of substantial size and, 
thus, will perform well with a coarse segmentation mask (Figure 8). Likewise, its performance will be 
robust to substantial errors in the segmentation mask, particularly the inclusion of a significant fraction of 
no-return pixels (water or shadow) in the land area, because it is based on low-order statistics typically 
derived over a large sample set. 
 
The KASSPER SAR remap algorithm is a viable alternative to the RSA-4 automated segmentation 
procedure. Automated segmentation is prone to error although the RSA-4 requirement is certainly at the 
low-end of the segmentation challenge-scale. The KASSPER SAR remap approach should have the 
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highest pay-off for tactical SAR sensors imaging relatively small scenes where small sample sizes may 
seriously degrade the automated segmentation results. 

2.3 Moving Target Focusing and Wind-Blown Tree Smear Removal 
 
During FY02, Veridian devoted small-scale efforts to the consideration of KASSPER approaches for 
SAR moving target focusing and wind-blown tree smear removal. SAR moving target focusing is 
motivated by DARPA and DoD interest in precision engagement of moving and stationary targets. 
Focused SAR signatures of stationary targets are very useful for target recognition/identification. SAR 
signatures of moving targets are typically displaced from their true ground position and misfocused 
(smeared) in the cross-range dimension. GMTI radar is optimized for moving target detection and 
tracking but provides little capability for target identification. High-range resolution (HRR) radar imaging 
of moving targets provides some capability for moving target fingerprinting and identification but 
performance certainly does not approach that obtainable from focused 2-D SAR signatures. 
 
Using moving target SAR data from its DCS radar testbed, Veridian has demonstrated computationally 
efficient approaches for focusing moving targets under purely translational motion. These techniques do 
not perform well when targets are moving along curved trajectories. The initial analysis conducted under 
this program indicates that external knowledge of the road on which a moving target is traveling would 
allow computationally efficient moving target focusing algorithms to perform well for the challenging 
cases of non-translational motion. Such capabilities would have a significant pay-off for precision 
targeting in complex environments. 
 
Wind-blow trees can degrade interpretability of focused SAR target signatures that are contaminated by 
noise-like tree smears. The degree of contamination is determined by the tree RCS, the wind intensity, 
and the distance of the target from the offending trees. It is not particularly dependent on the SAR 
aperture time.  
 
Veridian formulated a KASSPER approach for mitigating wind tree smear effects. The concept was to 
perform a spectral decomposition of a signature of interest and then to preserve a higher percentage of  
the prominent point returns as the distance increased between the target and the known tree locations. 
Figure 10 shows a sample image with moderately high degree of tree smears that extend over three 
stationary targets located on the road adjacent to the treelines. The prior knowledge of the roads (as 
possible target locations) allows significant processing gain for computationally expensive predictive 
methods such as MVM. Figure 11 illustrates the whole processed image that took several hours to 
process. The area of interest, shown by the red box, determines where MVM algorithm needs to be 
applied. This example shows a moderate level of smear reduction across the image, especially at the 
target chip size level. 
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Figure 10. Tree-smeared image. 

 

Figure 11. KA-MVM operates only in the 
relevant region of interest (red box). 

  
 

RECOMMENDED FY03 PLAN 

We recommend that Veridian’s FY03 KASSPER research concentrate on two topics: GMTI change 
detection and SAR moving target focusing. We believe that we can make significant progress on both 
subjects within the projected funding profile. 

2.4 GMTI Change Detection 
 
Our FY02 KASSPER effort on SAR stationary target detection has lead to the conclusion that change 
detection is the most productive approach for obtaining improved performance from the use of external 
knowledge sources. Veridian and other contractors/agencies have successfully demonstrated the benefits 
of SAR change detection in numerous applications. As such, we do not feel that it is a fruitful topic for 
near-term KASSPER innovations. 
 
Instead, we recommend that Veridian leverage its expertise on SAR change detection to develop and 
demonstrate analogous GMTI approaches. GMTI change detection involves the simultaneous analysis of 
a test data set that may contain targets and a reference data set that does not contain targets or, at least, is 
assumed not to contain targets. From a KASSPER perspective, the reference data set is the requisite 
external information. To our knowledge, GMTI change detection has never been studied. 
 
Using available dual and three-phase center moving target data from the Veridian DCS radar testbed, we 
will demonstrate the targeting performance benefits of GMTI change detection in comparison to a state-
of-the-art single-acquisition (test data only) STAP approach. Of particular interest is the degree to which 
GMTI change detection can overcome STAP training issues related to background clutter inhomogeneity 
and contamination by other moving targets.  
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GMTI change detection will be pursued using non-adaptive GMTI test statistics, e.g., DPCA outputs.  
Fine-resolution, spotlight-mode, moving target DCS data will be processed into coarse-resolution GMTI 
test and reference data sets. This will allow us to study sensitivity to GMTI range/doppler resolution.  
 
We will investigate both cell-level and object-level GMTI change detection. The former involves cell-
level analysis of registered GMTI test and reference data sets and is analogous to pixel-level SAR change 
detection (coherent or non-coherent). Registration (warping and resampling) of the GMTI test and 
reference data sets will be performed using existing SAR image registration tools applied to the single-
channel range/doppler data sets, i.e., the GMTI data before any clutter cancellation. 
 
Object-level GMTI change detection involves analysis of moving target reports generated independently 
from the test and reference data sets and is analogous to SAR object-level change detection (OLCD). Its 
primary objective is false alarm reduction, i.e., cancellation of test data moving target reports if they are 
associated with reports generated from the reference data. As mentioned previously, the reference data is 
assumed to be devoid of moving targets but it is not assumed to be devoid of artifacts that are similar to 
moving targets. 
 
In practice, cell-level GMTI change detection performance will be limited by the availability of reference 
data sets acquired at collection geometries that are similar to the test data collection. Object-level change 
detection is the next-best alternative provided that the less stringent test/reference report association can 
be handled properly. The spotlight-mode DCS data with typical 90 degree collection intervals about scene 
center will allow GMTI test and reference data sets to be generated with known aspect angle mismatches. 
We will use such data to quantify the performance trade-offs between these two complementary GMTI 
change detection approaches. 
 
Under IR&D funding, Veridian has implemented a GMTI STAP algorithm specifically for use with the 
recently upgraded DCS testbed. Our GMTI change detection results will be compared against the outputs 
of this single-acquisition STAP approach. 

2.5 SAR Moving Target Focusing 
 
We propose to implement a computationally efficient algorithm that will produce focused SAR signatures 
for moving targets with known trajectories. Using simulated moving target video phase history data, we 
will investigate the sensitivity of the algorithm to uncertainty in the target speed and errors in the external 
knowledge of the target path. We will demonstrate the algorithm using available DCS data of a military 
vehicle moving along a circle path. 


